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Finite-size scaling in space-time
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Finite-size scaling relations are obtained for the time-dependent Ginzburg-Landau equation in a finite space-
time volume. Universal ratios above the upper critical dimen$id@D) are demonstrated to hold true under
a mild restriction on its aspect ratio. A perturbation expansion is carried out to order one loop below the UCD,
demonstrating the validity of the scaling relations. These results are of practical use in determining the dynamic
critical exponent via space-time simulatiofp§1063-651X98)13605-X]

PACS numbses): 64.60.Ak, 64.60.Ht, 05.56.q, 05.70.Jk

I. INTRODUCTION This result relies on Ward-Takahashi identities which follow
from the supersymmetry of the effective action. Also, this
As is well known, it is possible for an infinite volume proof is necessary since standard renormalization group
system possessing short-range interactions to experience(BG) arguments only provide for the renormalizability of the
continuous phase transition; at this point the correlatiomodel, and do not offer enough constraints on the many
length ¢ dominates all other scales and determines the longinteractions to ensure that the form of the Langevin equation
wavelength behavior. However, when models for these sygs maintained. Finally, it should be noted that supersymmetry
tems are studied computationally, it is always the caseghat ensures that in the long-time limit the correct static correla-
cannot exceed the necessarily finite system size. Thus tH&®ns are recovered.
critical behavior is eventually precluded. The path-integral formulation of a nonlinear Langevin
In 1971 it was shown by Fishét] that the critical behav- €quation is reviewed in Sec. Il. It is demonstrated how a
ior could nevertheless be studied through the use of finiteconstrained theory can be made to appear as an equilibrium
size scalingFS9 relations. These relations show how exter-field theory, up to a Jacobian of transformation. In Sec. lll,
nal scales enter into expressions for thermodynamiéhe outline of the renormalization procedure is reviewed,
variables, and how they can be used to extract the criticapoth for completeness and to demonstrate how a finite spatial
behavior from &finite system. Within a field theoretic con- and temporal extent affect the scaling. Above four dimen-
text [2,3], the characteristic scale of the systéndoes not sions the fluctuations may be neglected in calculating the
change the critical exponents. This is because the exponerft$S relations, as is shown in Sec. IV. Fluctuations are
are due to short distance singularities, which are not affectefeated in Sec. V; modes which depend on nonzero wave
by finite scales. FSS has been useful in determining the critibumbers and frequencies are integrated out and their effect
cal exponents, scaling forms, and universal ratios for stati®n the zero mode is found. Many of the details are relegated
thermodynamic variables for a number of systems. It ha0 Appendixes A and B. Finally, concluding remarks are
also been used to determine the scaling form for the relax@iven in Sec. VI.
ation rate of the time-dependent Ginzburg-Land&DGL)
equation[4]. This was accomplished by identifying the ef- Il. FORMULATION

fective action as the path-integral representation of a : . .
guantum-mechanical Hamiltonian in imaginary time, and The time-dependent Ginzburg-Landau equafigis fre-

then noting that the relaxation rate was the inverse of thguently invoked to describe th.e critical behavior of a vgriety
energy gap of the first excited state of systems. As an example, it can be used to describe the

The content of this paper addresses the scaling of Spacgynamlcs of the nonconserved magnetizayothrough the

time averaged quantities, and the perturbative renormalizae—quat'on of motion:

tion of the model therein. To date there have been many do=—QoF[@]+ v (1)
attempts to measure the dynamical critical expomrdnt the ! ’
TDGL, and as of yet there is only a scattered consefLis Fle]l= (70— V) @+ Uge®, )

By simulating models in a finite space-time volume, and uti-

lizing the scaling relations given here, a new opportunity iswherev is a zero-mean random field with autocorrelation
available for determining this exponent. Indeed, the results

of this paper have already been applied towards that, in a (v(X)v(x"))=2Q8(x—x"), (3
Monte Carlo simulation of a 2 1 Ising model[6]. In addi- .

tion to the scaling relations, a perturbation calculation of thewherex=(r,t), and( ) represents an average over ndibes
TDGL on a space-time lattice is made, and the renormalizensures the fluctuation dissipation theorem of the second
ability is explicitly confirmed(to order one loop This con-  kind is satisfiell The parametet, is the bare reduced tem-
forms to a proof from Zinn-Justifi7] that the form of the perature,u, the bare coupling constant, ai¥, is propor-
Langevin equation is maintained despite renormalizationstional to the bare relaxation rate of a single spin. Periodic
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boundary conditions in space and time are used, although lIl. OUTLINE OF RENORMALIZATION

more complicated generalizations may be used as well. We
will not explicitly introduce any short distance scale to regu-.

larize the theory, rather a dimensional regularization will be
assumed throughout. time scaleT. The model is defined on a continuous space-

The goal is to determine the statistical properties ofIme voll:medL dT that 'St a_ésp_la_\;[]lal r:i/perclulieddfdlmen-
O[ ¢,], a polynomial in the fieldp, [i.e., the solution to Eqg. sions extended over a tim € ullraviolel divergences

: : . that are normally dealt with in this context arise, of course,
1)]. In the usual way, an expectation value is rewritten as . .
(D] y P from the behavior of the theory at small lengths and times.

Thus the presence of the scalesand T do not affect the
(O[(,D]>=< f ng‘[g[cp]]O[go]>, (4)  usual divergences present in the infinite volume case, and
what is more, these scales need not be renormalized them-
selves[2].
The RG equation may be derived in the usual way for the
correlation function

In this section renormalization group equations are given
in the case when there is a characteristic length dcaded

where
glel=@+QoF —v. (5)

This may be rewritten as <§DN;N>:G(N,N‘)(F,%;g’T'QT'M,L’M)’ (10)

<O[¢]>=<f7390 dEtM5[¢+QoF—V]O[<P]>, (6)

where u is a momentum scale arg= ™ €u is the dimen-
sionless coupling=4—d). The equation is found to be
whereM = dg/de. After introducing an auxiliary fieldp to

exponentiate thed function constraint, and then averaging 9 J  g) 9 N _
over, #ﬁJFB(Q)%JFT(N—M— +57(9)
_ [ pen| £ - 7
(Ole])= f D(pD( 27]_) detMO[plexg{—A}, (7) _ 77(9) —v0(9) _] cNN—q. (12)

where the actiom is . . . . -
In solving this equation with the method of characteristics, a

dimensionless scaling parameteenters in a way parallel to

A:f dx{ie(e+QoF)— Qo2 (8)  w. Thuspu is replaced byup, andp~0 corresponds to the
critical regime, whilep=1 is the “initial condition” [for e

>0 andB(g=g*#0)=0]. As a function ofp the param-

d . . . .
and/dx denotegd ¥ dt (d is the spatial dimensionalityin eters obey the following flow equation&e., the Wilson

the following, it will be more convenient to simply focus on

the generating functional equationy:
P dZ,(p) ~ = 5
210.71- | Dep| 2| detm p =) Zelp). ZJ=1 (12
xexp{—A+J dx(J<p+'5'gE)], 9) dZ,(p)
p ‘,’; =¥(p)Zy(p), Z, (1)=1, (13)
so that by differentiation with respect fo J, an expression
such agO[ ¢]) may be recovered. at(p)
Prior to averaging over the noise, the action density ap- P op T YAp)7(p), 7(1)=r, (14
pears asp(¢+ QoF — v), which by the method of stationary
phasegor the definition of the functionad function) simply 90(p)
enforces the original equation of motion. Upon averaging p p —y0(p)Qp), Q(1)=Q, (15)
over v and integrating ovek the action density becomes op
—(@+QgF)?/40,, which shows that the deterministic
equationd,p=—QoF is enforced, up to Gaussian devia- Q(P) B
tions. Physically, this is the nature of the path-integral weight p =B, 9(1)=g, (16)
~A statistically favoring those histories which most nearly
satisfy the equation of motiofwithout noisg. However, in _
M(p)=2,"(p)M. (17

the following the fielde will be retained, as it helps signifi-
cantly in the bookkeepind.The Jacobian cancels a set of
graphs that are proportional #0), the Heaviside function Solving for the scaling solution o&™: N), and then scaling
with zero argumernit out up gives
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GMNN(g,7,QT,M,L, )

*_ NN 7(p)
~p’NN(Mp)dNNG‘N’N)(g(p),Mz—pz,ﬂ(p)Tszz,M(p)
X(Mp)‘“"Z,LMp,l>, (18
where

., N N

YW 1t 5 (1t+22-4), (19
d\ - d

dyi=N| -1+ 5| +N| 1+ 3. (20)

Taking Lup=1, so that the infrared limitb—0 is ap-
proached ag u— o, it follows that

Qp)T(up)>~TQp "L 2=p20T(Lp) %, (2D)
Wp) pVr 7
— 5~ =— (L, 22
szz szz MZ( ,U~) ( )
M(p) M
(up) T2~ Ml—e/Z(Lﬂ)'B/V- (23
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QDH(UO\/QOV)_:LBQD, (26)
o—(QoV) g, (27)

and’g is integrated out, then

1/3
(2= (UgVQoV) " 2"3fy, TO(Q°V> } (29

Uo

1 )
fon(X)= N fo de(x+3¢?) o®" exp{ — (xo+ ¢3)%/4}.
(29

The RG equation derived in an earlier section tells us how to
find the renormalized form of the above equatibnis set to

1, and the bare parameters are replaced by their renormalized
version and made dimensionless with For exampler, is
replaced byrL'”. Repeating this with all the parameters
leads to

QT
7_Lllu( F

1/612n - 13
Lﬁ/v(F) } <(P2n>: fon } (30)

This is one of the main results of this paper. The above
equation can be used to find, for example, how averaged

In summary, what has been shown is that near the criticalhoments of the magnetization scale withandT. In turn,

point

(.t .
G(N’N)<r,?;g,7,QT,M,L,,u)~L‘7NN‘dNN

>

rt

L'f;g

T
*, 7L, —,MLB’V,l,l). (24)

this can be used to determine the dynamic critical exponent
z, as was done in Ref6]. It is important to note that the
“shape factor” QT/L? defines a universality class for this
space-timgST) model, in analogy to characteristic ratios for
other anisotropic systeni8]. Also, when this ratio is unity,

the effect of the ST volume seems to disappear. This makes
some physical sense, since one can imagine that a correlated
ST region would be least disturbed by this geometry, as the

Thus the strongest statement we can make just from thigatios £/ T and £/L would be proportionainearT,).

renormalization scheme is that the scaling function will take Following Brezin and Zinn-Justin, many universal, di-
this form, having two separate scaling variables. To go furmensionless ratios may be deduced at the critical paigt (
ther, explicit scaling functions must be calculated; this will =), for example,

be pursued starting at the mean-field level. Finally, it should
be emphasized that these equations only tell how the param-
eters will be renormalized, not whether the form of the

I'(%)

4
/ 2norm 0t \ , <"02>2:J¥  —1.29054.., (31)
Langevin equation will be maintained. Working from a su- (%) r2)?
persymmetrical form of the action, it is possible to prove the
latter[7].

which should be compared to 1005 as found on a two
dimensional Ising model by Monte Carlo simulati$6].
There are two classes of corrections to this mean-field result
hat must be considered; they are due to tree and one-loop
erms. In this ST model there is, however, the additional
complication due to the Jacobian. Its presence gives rise to
interactions which serve to cancel graphs with a closed loop

of (¢¢) propagators, as well as to ensure that the parameters
in the Jacobian and the action are renormalized in a consis-
tent way(i.e., that the conditiorZ[0,0]=1 is preserved, or-

der by orde). The tree terms have the form

IV. MEAN FIELD (d>4)

To study the scaling behavior above the critical dimensio
of 4, it suffices to simply neglect all fields that have a non-

zero dependence qn= (K, w). Settingp= ¢p=0, afield av-
erage may be written as

% = dg
<<P2n>:f7xd<Ple ZVQO(TO+3UOQD2)QD2n

X exp{VQoe(iro+iuged— o)}, (25)

where the normalization follows from the requireméd
=1. If the fields are scaled as

(QoV) "™, (32

which upon scaling as in Eq27) behave as
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(QOV) 1-n/6— m/2_ (33) Q
STV

°> (wz—+w2—) (41)
This decays withV so long asn>6—3m; thus the RG- P k
irrelevant terms may be ignored at tree level. The quartic
coupling leads to one-loop graphs, which are proportional to
(ee)N1(¢A)N2. Upon scaling as in Eq$26) and (27), this
behaves a$with N;=1, N,=0)

(42

<|§£J

% (a)2+ wk)

and the prime indicates thpt=0 is not summed over. These
L8 \(@NiFN2B ) T sums may be evaluated by dimensional regularizagse

(m) (7) (349  Appendix B, and the divergences may be absorbed with a
0 minimal subtraction scheme by definitgith go= 249, 7o

Thus if QoT~L2, they will decay ford>4. Also, if d=4, =Z,7)

the graphs begin to decay whéT increases faster thar? 6

for N,>1 (and is marginal foN,=1, N;=1). The choice of Z,=1+—-g+0(g?, (43
Q,T~L2 was taken in Ref[6] for other reasons; it will also €

be assumed here.

18
Zy=1+—g+0(g?), (44)
V. FLUCTUATION EFFECTS €

After Fourier transforming Eq(5), the constraint fokp,  which are the same renormalizations in the statfcmodel
becomes [8]. Because these are renormalizationstatic parameters,
it is not surprising that they are the same. Within the context
. of equilibrium Langevin models this was shown by De Do-
= —iw+ + - o o
gp=V| (Zlotwep UOQOE p1Pp, P05 020 0™ Vo | minicis [10] to always be the case. In any event, as the criti-
cal temperature is approached, the coupling constant ap-
(35 , o . .
proaches its critical valueg{ = €/6), and gives rise to the

where same anomalous dimensions found in the infinite volume
case.
K= 2m n, nezd (36) The effect of the renormalization on the universal ratio of
L the preceding section may be found by substituting renor-
malized values foty andug in the argument of Eq29). Of
0= Z_Wm me 2 37) course, if this is done at the new critical temperat(ire.,
T ' 7=0), then the universal constant will not be changed. If,

however, it is possible to determine the bare critical tempera-
As discussed earlier, an auxiliary field may be introducedure (e.g., from a Langevin modglthen with respect to that
and the noise averaged over, to give the generating fungt is possible to find how the fluctuations affect the universal
tional (sans sourcgs ratio. Working atry=0, the newmrenormalizeglargument of

fon in Eq. (29) becomegwith g=(uL)g*]
:f DeD

= —Zp v[ i';_p((—imwk)gop

i) detMe A, 38)
2

g QT 1)\ T
a1 o).

l1(7o=0)=—5.54517.. ., (46)

+Uun) S —Qoo_ront, (39 wherel; is defined in Eq(B9). It must be remembered that
° O% MM Epip) o¢ p%) (39 at this point the parameters and () are evaluated at the
. critical point, which means they now depend an[i.e.,

with w,=Qo(7o+k?). r(L)L?~7LY and Q(L)T/L2~QT/L?]. However, this is
The effect of the modes with nonzepodependence will irrelevant forz at this order, since=2+ O(€?). As a func-

be to renormalize the values of the parameters, as well as th@n of y, the dimensionless ratio of E¢31) becomes

fields with zerop dependence. There will also be terms that

can be shown to be irrelevant in the RG sense, and so will be  (¢%) L'(7/6) 243 (T(1/2) T(5/6)

ignored. Thus, integrating over all fields that depend on non-  (,2)2 = ' (5/6)2 Ty "3 \I'(5/6) TI(7/6)

zerop (see Appendix A it is found thatry andug take on

the effective values +0(y?). (47)
— 2
7o=To+ 6UeS; +O(Up), VI. CONCLUDING REMARKS
Up=Uo— 18u3$2+ O(ug), (40) Finite-size scaling relations have been obtained for the

time-dependent Ginzburg-Landau equation when it is con-
where strained in time as well as space. This has already proven
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useful in Monte Carlo simulationgg] that were performed  ~. X = @ = g------
on finite spatial volumes, towards the end of determining the + +
dynamical critical exponent for the model. It should be noted

that the method of the calculation used here may be applied
to other models as well. In the case of nonequilibrium mod- FIG. 1. Diagrammatic representation of the interaction vertices
els, such as those with an additional scale due to a time=A/ .
dependent field, the current picture could potentially be en-
riched.

The general approach and several technical details may be
traced back to works of Beén and Zinn-Justiff2], where
the effect of a finite spatial scale was calculated. In addition,
Zinn-Justin was able to use the supersymmetry of the effec-
tive action to prove that the form of the Langevin equation is
maintained under renormalizatidid]. Also, a scaling form
for the relaxation rate has already been derived by Gold-
schmidt and Niel and Zinn-Justii], in which they took
advantage of the similarity of the effective action t0 afje|ds with nonzerg dependence will be integrated over in
guantum-mechanical Hamiltonian. the generating functional:

While the main result was the scaling behavior of the
magnetization, the main technical difficulty in this paper was
due to the Jacobian, whose presence is a consequence of this Z= f DeD
being a(dynamically constrained theory. Thus the results

tr(G™'B)’=—(3Up2oV)* X (¢ qea)(®-q @)
a.q’

X 2 PpPp’ 5p+p’,qq’)
p.p’

E’ qu()Dprép_'_pr‘qr_q). (AS)

)detMOexp[ A—A'—A'}, (AB)

given here could perhaps be carried over to gauge theories, ~ dods
for example. Physical considerations and certain technicap ’D( i) _2ete
aspects imply that the choice of the temporal extent_? is 27 27
special. But this is just a consequence of the mean-field value q q dReZdIm s
of the dynamical critical exponent being equal to 2. The x [1 Re ¢yd Im ¢, d Re¢pd IM ¢
importance of the aspect ratio for systems with more than p>0 ™ ™ '
one correlation length has also been noted in purely spatial (A7)
models[9].
detMo=]] V(—iow+w)), (A8)
APPENDIX A P
The elements of the determinant are —A=V{ig(wop+Ugoe?) — Qe?}, (A9)
59, —A'=V{ig_p(—io+w)ep—Qog-_pep}, (AL0)
5qu —V(—Ia)+wk)5p p/+3UOQOVE (Pq(pq/ q+q’,p—p’
aq’ y . r~ _
_ —A :IUOQOE (Ppl(PpZQDp3‘P452pi,O+tr(G lB)
=(G+B)y p» (A1) Pi

1
_ = -1p\2 3
where G is the free part andB is proportional touy. The 2tr(G B)*+0(up). (ALD)

determinant may be rewritten as . ) . )
The three interaction terms on the right hand side are repre-

sented diagrammatically in Fig. 1; a straight line represents
de(G+B)=exptr In(G+B)} (A2) 4, and an arrow represergs After integrating over all fields
with nonzerop dependence, the result is

=[l;[ V(—io+wy) exp[tr(G‘lB) z=f dedewoV(1+A)e A, (A12)

1
—Etr(G’lB)er

(A3) A= 3u0(“

Q) -
[} +U081 6 (;)_ +6|QoV(,D(P
0
(A13)

In further detail, the trace terms are
—UpgS, 4(

Q -
= <p2+18iQOV<p3qo]+O<uS>,
0
(A14)

tr(G™1B)=—3iuQeVY, (o .
( ) oo % (e qgDq>2p Ppé-p whereS; andS, are the same as in Eq&tl and 42. The

(A4) diagrammatic expression df is shown in Fig. 2. It is ex-
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. _1Q§T o1
AN+ O+ LA Sov 3 ©

wherew,=Qq(79+ k?) and the dots represent exponentially
small correctiongthat can be ignoredAside from the con-

. stant shift added t&, , these sums are the same as in¢ffe
4 4 model, as was expected. The divergences may be extracted
from the sums by making use of the identifpr N=1,2)

FIG. 2. Diagrammatic representation of the graphs ! H%)N: foce*assN’l{A(s)d—l}ds, (B4)
n (at+n
pected thatA is due to a renormalization & and of wgV.
So allowing for shifts of these two quantities where
(1)0V-> (1)0V+A1, (A15) A(S): 2 efsmzl (85)
me 2
—A——A+A,, (A16)

The Poisson formula allows one to show that
and imposing the normalization conditions that the action be

~ 2
proportional toe and that there be no constant terms, it A(s)= \/EA(W ) (B6)
S 7

follows that s

woV— Q{79+ 6UyS; +3¢%(Uy— 18u3S,)}, (A17)  which makes it clear that there are divergences in the inte-
grals ass— 0. Becausé\(s— =) =1, the divergent pieces in
—ASOMi0o(Ta+6US) +io03(U.—18U2S,) — o2 Egs.(B2) and(B3) can be isolated using dimensional regu-
oViTee(To 051) He¢(Uo 052)— ) larization. The result i$with a=(L/21)27,]

(A18)
Redefininguy and 7, to the effective values in E¢40), gV S :i QoT n 1 L2 | 212
andA retain their original form, and the model is seen to be 1712 L9 T2 (277)2 1
renormalizablgto this ordey. )
X —+(1—“y>+0<e>)], (B7)
APPENDIX B €
The sums given in Eq€41) and (42) may be evaluated 1 1 B 2 .
with the identity S=5 @mpt (|t vt o |1,
. B8
B 1 2x 2 1 B1 (B8)
COtHWX)_R+?m:1 Zrm? (B1)

% T\ 2
|N=f e as sN—l{A(s)“—l—(g) ]ds (B9)
Upon summing over the frequency, it follows that °

(5/=0.5772, the Euler-Mascheroni constanvhere thel
10T 100w, 1 - )
5121_2T1_+ — — (B2) are finite. The two poles ia can be removed by a renormal-

2 L0 o ization of g andug, as given in Eqs(43) and (44).
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