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Finite-size scaling in space-time
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Finite-size scaling relations are obtained for the time-dependent Ginzburg-Landau equation in a finite space-
time volume. Universal ratios above the upper critical dimension~UCD! are demonstrated to hold true under
a mild restriction on its aspect ratio. A perturbation expansion is carried out to order one loop below the UCD,
demonstrating the validity of the scaling relations. These results are of practical use in determining the dynamic
critical exponent via space-time simulations.@S1063-651X~98!13605-X#

PACS number~s!: 64.60.Ak, 64.60.Ht, 05.50.1q, 05.70.Jk
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I. INTRODUCTION

As is well known, it is possible for an infinite volum
system possessing short-range interactions to experien
continuous phase transition; at this point the correlat
lengthj dominates all other scales and determines the lo
wavelength behavior. However, when models for these s
tems are studied computationally, it is always the case thj
cannot exceed the necessarily finite system size. Thus
critical behavior is eventually precluded.

In 1971 it was shown by Fisher@1# that the critical behav-
ior could nevertheless be studied through the use of fin
size scaling~FSS! relations. These relations show how exte
nal scales enter into expressions for thermodyna
variables, and how they can be used to extract the crit
behavior from afinite system. Within a field theoretic con
text @2,3#, the characteristic scale of the systemL does not
change the critical exponents. This is because the expon
are due to short distance singularities, which are not affec
by finite scales. FSS has been useful in determining the c
cal exponents, scaling forms, and universal ratios for st
thermodynamic variables for a number of systems. It
also been used to determine the scaling form for the re
ation rate of the time-dependent Ginzburg-Landau~TDGL!
equation@4#. This was accomplished by identifying the e
fective action as the path-integral representation of
quantum-mechanical Hamiltonian in imaginary time, a
then noting that the relaxation rate was the inverse of
energy gap of the first excited state.

The content of this paper addresses the scaling of sp
time averaged quantities, and the perturbative renorma
tion of the model therein. To date there have been m
attempts to measure the dynamical critical exponentz for the
TDGL, and as of yet there is only a scattered consensus@5#.
By simulating models in a finite space-time volume, and u
lizing the scaling relations given here, a new opportunity
available for determining this exponent. Indeed, the res
of this paper have already been applied towards that,
Monte Carlo simulation of a 211 Ising model@6#. In addi-
tion to the scaling relations, a perturbation calculation of
TDGL on a space-time lattice is made, and the renorma
ability is explicitly confirmed~to order one loop!. This con-
forms to a proof from Zinn-Justin@7# that the form of the
Langevin equation is maintained despite renormalizatio
571063-651X/98/57~5!/5190~6!/$15.00
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This result relies on Ward-Takahashi identities which follo
from the supersymmetry of the effective action. Also, th
proof is necessary since standard renormalization gr
~RG! arguments only provide for the renormalizability of th
model, and do not offer enough constraints on the ma
interactions to ensure that the form of the Langevin equa
is maintained. Finally, it should be noted that supersymme
ensures that in the long-time limit the correct static corre
tions are recovered.

The path-integral formulation of a nonlinear Langev
equation is reviewed in Sec. II. It is demonstrated how
constrained theory can be made to appear as an equilib
field theory, up to a Jacobian of transformation. In Sec.
the outline of the renormalization procedure is reviewe
both for completeness and to demonstrate how a finite sp
and temporal extent affect the scaling. Above four dime
sions the fluctuations may be neglected in calculating
FSS relations, as is shown in Sec. IV. Fluctuations
treated in Sec. V; modes which depend on nonzero w
numbers and frequencies are integrated out and their e
on the zero mode is found. Many of the details are relega
to Appendixes A and B. Finally, concluding remarks a
given in Sec. VI.

II. FORMULATION

The time-dependent Ginzburg-Landau equation@8# is fre-
quently invoked to describe the critical behavior of a varie
of systems. As an example, it can be used to describe
dynamics of the nonconserved magnetizationw through the
equation of motion:

] tw52V0F@w#1n, ~1!

F@w#5~t02¹2!w1u0w3, ~2!

wheren is a zero-mean random field with autocorrelation

^n~x!n~x8!&52V0d~x2x8!, ~3!

wherex[(rW,t), and^ & represents an average over noise~this
ensures the fluctuation dissipation theorem of the sec
kind is satisfied!. The parametert0 is the bare reduced tem
perature,u0 the bare coupling constant, andV0 is propor-
tional to the bare relaxation rate of a single spin. Perio
5190 © 1998 The American Physical Society
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57 5191FINITE-SIZE SCALING IN SPACE-TIME
boundary conditions in space and time are used, altho
more complicated generalizations may be used as well.
will not explicitly introduce any short distance scale to reg
larize the theory, rather a dimensional regularization will
assumed throughout.

The goal is to determine the statistical properties
O@wn#, a polynomial in the fieldwn @i.e., the solution to Eq.
~1!#. In the usual way, an expectation value is rewritten a

^O@w#&5 K E Dgd†g@w#‡O@w# L , ~4!

where

g@w#[ẇ1V0F2n. ~5!

This may be rewritten as

^O@w#&5 K E Dw det Md@ẇ1V0F2n#O@w# L , ~6!

whereM5]g/]w. After introducing an auxiliary fieldw̃ to
exponentiate thed function constraint, and then averagin
over n,

^O@w#&5E DwDS w̃

2p
D det MO@w#exp$2A%, ~7!

where the actionA is

A5E dx$ i w̃~ ẇ1V0F !2V0w̃2% ~8!

and*dx denotes*ddr dt ~d is the spatial dimensionality!. In
the following, it will be more convenient to simply focus o
the generating functional

Z@J, J̃ #5E DwDS w̃

2p
D det M

3expH 2A1E dx~Jw1 J̃ w̃ !J , ~9!

so that by differentiation with respect toJ, J̃ , an expression
such aŝ O@w#& may be recovered.

Prior to averaging over the noise, the action density
pears asw̃(ẇ1V0F2n), which by the method of stationar
phases~or the definition of the functionald function! simply
enforces the original equation of motion. Upon averag
over n and integrating overw̃ the action density become
2(ẇ1V0F)2/4V0 , which shows that the deterministi
equation] tw52V0F is enforced, up to Gaussian devi
tions. Physically, this is the nature of the path-integral wei
e2A, statistically favoring those histories which most nea
satisfy the equation of motion~without noise!. However, in
the following the fieldw̃ will be retained, as it helps signifi
cantly in the bookkeeping.@The Jacobian cancels a set
graphs that are proportional tou~0!, the Heaviside function
with zero argument#.
gh
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III. OUTLINE OF RENORMALIZATION

In this section renormalization group equations are giv
in the case when there is a characteristic length scaleL and
time scaleT. The model is defined on a continuous spac
time volumeLdT, that is, a spatial hypercube ofd dimen-
sions extended over a timeT. The ultraviolet divergences
that are normally dealt with in this context arise, of cour
from the behavior of the theory at small lengths and tim
Thus the presence of the scalesL and T do not affect the
usual divergences present in the infinite volume case,
what is more, these scales need not be renormalized th
selves@2#.

The RG equation may be derived in the usual way for
correlation function

^wNw̃ Ñ&5G~N,Ñ!S rW,
t

T
;g,t,VT,M ,L,m D , ~10!

wherem is a momentum scale andg5m2eu is the dimen-
sionless coupling (e542d). The equation is found to be

H m
]

]m
1b~g!

]

]g
1

g~g!

2 S N2M
]

]M D1
Ñ

2
g̃ ~g!

2gt~g!t
]

]t
2gV~g!

]

]V
J G~N,Ñ!50. ~11!

In solving this equation with the method of characteristics
dimensionless scaling parameterr enters in a way parallel to
m. Thusm is replaced bymr, andr;0 corresponds to the
critical regime, whiler51 is the ‘‘initial condition’’ @for e
.0 andb(g5g* Þ0)50#. As a function ofr the param-
eters obey the following flow equations~i.e., the Wilson
equations!:

r
dZ̃w~r!

r
5 g̃ ~r! Z̃w~r!, Z̃w~1!51, ~12!

r
dZw~r!

r
5g~r!Zw~r!, Zw~1!51, ~13!

r
]t~r!

]r
52gt~r!t~r!, t~1!5t, ~14!

r
]V~r!

]r
52gV~r!V~r!, V~1!5V, ~15!

r
]g~r!

]r
5b~r!, g~1!5g, ~16!

M ~r!5Zw
21/2~r!M . ~17!

Solving for the scaling solution ofG(N,Ñ), and then scaling
out mr gives
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5192 57MICHAEL F. ZIMMER
G~N,Ñ!~g,t,VT,M ,L,m!

;rg
NÑ
*

~mr!dNÑG~N,Ñ!S g~r!,
t~r!

m2r2 ,V~r!Tm2r2,M ~r!

3~mr!211e/2,Lmr,1D , ~18!

where

gNÑ
* 5

N

2
h1

Ñ

2
~h12z24!, ~19!

dNÑ5NS 211
d

2D1ÑS 11
d

2D . ~20!

Taking Lmr51, so that the infrared limitr→0 is ap-
proached asLm→`, it follows that

V~r!T~mr!2;TVr2gV
!
L225m2VT~Lm!2z, ~21!

t~r!

m2r2 ;
r2gt

!
t

m2r2 5
t

m2 ~Lm!1/n, ~22!

M ~r!

~mr!12e/2;
M

m12e/2 ~Lm!b/n. ~23!

In summary, what has been shown is that near the crit
point

G~N,Ñ!S rW,
t

T
;g,t,VT,M ,L,m D;L2g

NÑ
* 2dNÑ

3G~N,Ñ!S rW

L
,

t

T
;g* ,tL1/n,

VT

Lz ,MLb/n,1,1D . ~24!

Thus the strongest statement we can make just from
renormalization scheme is that the scaling function will ta
this form, having two separate scaling variables. To go f
ther, explicit scaling functions must be calculated; this w
be pursued starting at the mean-field level. Finally, it sho
be emphasized that these equations only tell how the pa
eters will be renormalized, not whether the form of t
Langevin equation will be maintained. Working from a s
persymmetrical form of the action, it is possible to prove t
latter @7#.

IV. MEAN FIELD „d>4…

To study the scaling behavior above the critical dimens
of 4, it suffices to simply neglect all fields that have a no
zero dependence onp5(kW ,v). Settingw5wp50 , a field av-
erage may be written as

^w2n&5E
2`

`

dwE
2`

` dw̃

2p
VV0~t013u0w2!w2n

3exp$VV0w̃~ i tw1 iu0w32w̃ !%, ~25!

where the normalization follows from the requirement^1&
51. If the fields are scaled as
al

is
e
-
l
d
m-

e

n
-

w→~u0AV0V!21/3w, ~26!

w̃→~V0V!21/2w̃ , ~27!

and w̃ is integrated out, then

^w2n&5~u0AV0V!22n/3f 2nFt0S V0V

u0
D 1/3G , ~28!

f 2n~x!5
1

Ap
E

0

`

dw~x13w2!w2n exp$2~xw1w3!2/4%.

~29!

The RG equation derived in an earlier section tells us how
find the renormalized form of the above equation:L is set to
1, and the bare parameters are replaced by their renorma
version and made dimensionless withL. For example,t0 is
replaced bytL1/n. Repeating this with all the paramete
leads to

FLb/nS VT

Lz D 1/6G2n

^w2n&5 f̄ 2nFtL1/nS VT

Lz D 1/3G . ~30!

This is one of the main results of this paper. The abo
equation can be used to find, for example, how avera
moments of the magnetization scale withL and T. In turn,
this can be used to determine the dynamic critical expon
z, as was done in Ref.@6#. It is important to note that the
‘‘shape factor’’ VT/Lz defines a universality class for thi
space-time~ST! model, in analogy to characteristic ratios fo
other anisotropic systems@9#. Also, when this ratio is unity,
the effect of the ST volume seems to disappear. This ma
some physical sense, since one can imagine that a corre
ST region would be least disturbed by this geometry, as
ratiosjz/T andj/L would be proportional~nearTc!.

Following Brézin and Zinn-Justin, many universal, d
mensionless ratios may be deduced at the critical pointt0
50), for example,

^w4&

^w2&2 5Ap
G~ 7

6 !

G~ 5
6 !2

51.290 54. . . , ~31!

which should be compared to 1.106.05 as found on a two
dimensional Ising model by Monte Carlo simulation@6#.
There are two classes of corrections to this mean-field re
that must be considered; they are due to tree and one-
terms. In this ST model there is, however, the additio
complication due to the Jacobian. Its presence gives ris
interactions which serve to cancel graphs with a closed l
of ^ww̃& propagators, as well as to ensure that the parame
in the Jacobian and the action are renormalized in a con
tent way~i.e., that the conditionZ@0,0#51 is preserved, or-
der by order!. The tree terms have the form

~V0V!wnw̃m, ~32!

which upon scaling as in Eq.~27! behave as
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57 5193FINITE-SIZE SCALING IN SPACE-TIME
~V0V!12n/62m/2. ~33!

This decays withV so long asn.623m; thus the RG-
irrelevant terms may be ignored at tree level. The qua
coupling leads to one-loop graphs, which are proportiona
(ww̃)N1(w2)N2. Upon scaling as in Eqs.~26! and ~27!, this
behaves as~with N1>1, N2>0!

S L6

V0VD ~2N11N2!/3S V0T

L2 D . ~34!

Thus if V0T;L2, they will decay ford.4. Also, if d54,
the graphs begin to decay whenVT increases faster thanL2

for N2.1 ~and is marginal forN251, N151!. The choice of
V0T;L2 was taken in Ref.@6# for other reasons; it will also
be assumed here.

V. FLUCTUATION EFFECTS

After Fourier transforming Eq.~5!, the constraint forwp
becomes

gp5VS ~2 iv1vk!wp1u0V0(
pi

wp1
wp2

wp3
d(pi ,p2npD ,

~35!

where

kW5
2p

L
nW , nW PZd ~36!

v5
2p

T
m, mPZ. ~37!

As discussed earlier, an auxiliary field may be introduc
and the noise averaged over, to give the generating fu
tional ~sans sources!:

Z5E DwDS w̃

2p
D det Me2A, ~38!

A52(
p

VH i w̃2pS ~2 iv1vk!wp

1u0V0(
pi

wp1
wp2

wp3
d(pi ,pD 2V0w̃2pw̃pJ , ~39!

with vk5V0(t01kW2).
The effect of the modes with nonzerop dependence will

be to renormalize the values of the parameters, as well as
fields with zerop dependence. There will also be terms th
can be shown to be irrelevant in the RG sense, and so wi
ignored. Thus, integrating over all fields that depend on n
zerop ~see Appendix A!, it is found thatt0 andu0 take on
the effective values

t085t016u0S11O~u0
2!,

u085u0218u0
2S21O~u0

2!, ~40!

where
ic
o

d
c-

he
t
e
-

S15
V0

V (
p

8
1

~v21vk
2!

, ~41!

S25
V0

2

V (
p

8
2vk

~v21vk
2!2 , ~42!

and the prime indicates thatp50 is not summed over. Thes
sums may be evaluated by dimensional regularization~see
Appendix B!, and the divergences may be absorbed with
minimal subtraction scheme by defining~with g05Zgg, t0
5Ztt!

Zt511
6

e
g1O~g2!, ~43!

Zg511
18

e
g1O~g2!, ~44!

which are the same renormalizations in the staticw4 model
@8#. Because these are renormalizations ofstatic parameters,
it is not surprising that they are the same. Within the cont
of equilibrium Langevin models this was shown by De D
minicis @10# to always be the case. In any event, as the cr
cal temperature is approached, the coupling constant
proaches its critical value (g* 5e/6), and gives rise to the
same anomalous dimensions found in the infinite volu
case.

The effect of the renormalization on the universal ratio
the preceding section may be found by substituting ren
malized values fort0 andu0 in the argument of Eq.~29!. Of
course, if this is done at the new critical temperature~i.e.,
t50!, then the universal constant will not be changed.
however, it is possible to determine the bare critical tempe
ture ~e.g., from a Langevin model!, then with respect to tha
it is possible to find how the fluctuations affect the univer
ratio. Working att050, the new~renormalized! argument of
f 2n in Eq. ~29! becomes@with ĝ5(mL)eg* #

y5
ĝ

~16p2!1/3 S VT

L2

1

ĝ
D 1/3H 8p2S VT

L2 D112I 1J , ~45!

I 1~t050!525.545 17. . . , ~46!

whereI 1 is defined in Eq.~B9!. It must be remembered tha
at this point the parameterst and V are evaluated at the
critical point, which means they now depend onL @i.e.,
t(L)L2;tL1/n and V(L)T/L2;VT/Lz#. However, this is
irrelevant forz at this order, sincez521O(e2). As a func-
tion of y, the dimensionless ratio of Eq.~31! becomes

^w4&

^w2&2 5Ap
G~7/6!

G~5/6!2 H 11y
24/3

3 S G~1/2!

G~5/6!
2

G~5/6!

G~7/6! D J
1O~y2!. ~47!

VI. CONCLUDING REMARKS

Finite-size scaling relations have been obtained for
time-dependent Ginzburg-Landau equation when it is c
strained in time as well as space. This has already pro
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5194 57MICHAEL F. ZIMMER
useful in Monte Carlo simulations@6# that were performed
on finite spatial volumes, towards the end of determining
dynamical critical exponent for the model. It should be no
that the method of the calculation used here may be app
to other models as well. In the case of nonequilibrium mo
els, such as those with an additional scale due to a ti
dependent field, the current picture could potentially be
riched.

The general approach and several technical details ma
traced back to works of Bre´zin and Zinn-Justin@2#, where
the effect of a finite spatial scale was calculated. In additi
Zinn-Justin was able to use the supersymmetry of the ef
tive action to prove that the form of the Langevin equation
maintained under renormalization@7#. Also, a scaling form
for the relaxation rate has already been derived by Go
schmidt and Niel and Zinn-Justin@4#, in which they took
advantage of the similarity of the effective action to
quantum-mechanical Hamiltonian.

While the main result was the scaling behavior of t
magnetization, the main technical difficulty in this paper w
due to the Jacobian, whose presence is a consequence o
being a ~dynamically! constrained theory. Thus the resu
given here could perhaps be carried over to gauge theo
for example. Physical considerations and certain techn
aspects imply that the choice of the temporal extentT;L2 is
special. But this is just a consequence of the mean-field v
of the dynamical critical exponent being equal to 2. T
importance of the aspect ratio for systems with more th
one correlation length has also been noted in purely sp
models@9#.

APPENDIX A

The elements of the determinant are

dgp

dwp8
5V~2 iv1vk!dp,p813u0V0V(

qq8
wqwq8dq1q8,p2p8

[~G1B!p8,p , ~A1!

whereG is the free part andB is proportional tou0 . The
determinant may be rewritten as

det~G1B!5exp$tr ln~G1B!% ~A2!

5H)
p

V~2 iv1vk!J expH tr~G21B!

2
1

2
tr~G21B!21¯J . ~A3!

In further detail, the trace terms are

tr~G21B!523iu0V0V(
q

^w̃2qwq&(
p

wpw2p ,

~A4!
e
d
d
-
e-
-

be

,
c-
s

-

s
this

s,
al

ue

n
ial

tr~G21B!252~3u0V0V!2(
q,q8

^w̃2qwq&^w̃2q8wq8&

3S (
p,p8

wpwp8dp1p8,q2q8D
3S (

p,p8
wpwp8dp1p8,q82qD . ~A5!

Fields with nonzerop dependence will be integrated over
the generating functional:

Z5E DwDS w̃

2p
D det M0 exp$2A2A82AI8%, ~A6!

DwDS w̃

2p
D 5

dwdw̃

2p

3 )
p.0

S d Re wpd Im wp

p

d Re w̃pd Im w̃p

p
D ,

~A7!

det M05)
p

V~2 iv1vk!, ~A8!

2A5V$ i w̃~v0w1u0V0w3!2V0w̃2%, ~A9!

2A85V$ i w̃2p~2 iv1vk!wp2V0w̃2pw̃p%, ~A10!

2AI85 iu0V0(
pi

8w̃p1
wp2

wp3
w4d(pi ,0

1tr~G21B!

2
1

2
tr~G21B!21O~u0

3!. ~A11!

The three interaction terms on the right hand side are re
sented diagrammatically in Fig. 1; a straight line represe
w, and an arrow representsw̃ . After integrating over all fields
with nonzerop dependence, the result is

Z5E dwdw̃v0V~11D!e2A, ~A12!

D53u0S V0

v0
Dw21u0S1H 6S V0

v0
D16iV0Vww̃J

~A13!

2u0
2S2H 54S V0

v0
Dw2118iV0Vw3w̃J 1O~u0

3!,

~A14!

whereS1 and S2 are the same as in Eqs.~41 and 42!. The
diagrammatic expression ofD is shown in Fig. 2. It is ex-

FIG. 1. Diagrammatic representation of the interaction verti
2AI8 .
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57 5195FINITE-SIZE SCALING IN SPACE-TIME
pected thatD is due to a renormalization ofA and ofv0V.
So allowing for shifts of these two quantities

v0V→v0V1D1 , ~A15!

2A→2A1D2 , ~A16!

and imposing the normalization conditions that the action
proportional to w̃ and that there be no constant terms,
follows that

v0V→V0V$t016u0S113w2~u0218u0
2S2!%, ~A17!

2A→V0V$ iww̃~t016u0S1!1 i w̃w3~u0218u0
2S2!2w̃2%.

~A18!

Redefiningu0 andt0 to the effective values in Eq.~40!, v0V
andA retain their original form, and the model is seen to
renormalizable~to this order!.

APPENDIX B

The sums given in Eqs.~41! and ~42! may be evaluated
with the identity

coth~px!5
1

px
1

2x

p (
m51

`
1

x21m2 . ~B1!

Upon summing over the frequency, it follows that

S15
1

12

V0T

Ld 1
1

2

V0

Ld (
kW

8
1

vk
1¯ , ~B2!

FIG. 2. Diagrammatic representation of the graphsD.
r-

, J
e
t

S25
1

2

V0
2T

V (
kW

8
1

vk
2 , ~B3!

wherevk5V0(t01kW2) and the dots represent exponentia
small corrections~that can be ignored!. Aside from the con-
stant shift added toS1 , these sums are the same as in thew4

model, as was expected. The divergences may be extra
from the sums by making use of the identity~for N51,2!

(
nW

8
1

~a1nW 2!N
5E

0

`

e2assN21$A~s!d21%ds, ~B4!

where

A~s!5 (
mPZ

e2sm2
. ~B5!

The Poisson formula allows one to show that

A~s!5Ap

s
AS p2

s D , ~B6!

which makes it clear that there are divergences in the in
grals ass→0. BecauseA(s→`)51, the divergent pieces in
Eqs.~B2! and ~B3! can be isolated using dimensional reg
larization. The result is@with a5(L/2p)2t0#

S15
1

12

V0T

Ld 1
1

2

L22d

~2p!2 H I 12pd/2a12e/2

3S 2

e
1~12ĝ !1O~e! D J , ~B7!

S25
1

2

1

~2p!2 L42dH I 21pd/2a2e/2S 2

e
2ĝ1O~e! D J ,

~B8!

I N5E
0

`

e2as sN21H A~s!4212S p

s D 2J ds ~B9!

~ĝ50.5772, the Euler-Mascheroni constant!, where theI N
are finite. The two poles ine can be removed by a renorma
ization of t0 andu0 , as given in Eqs.~43! and ~44!.
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